
Recovering High-Value Secrets with SGX and Social
Authentication

Nathan Malkin, Serge Egelman, David Wagner
University of California, Berkeley

{nmalkin, egelman, daw}@cs.berkeley.edu

ABSTRACT
While passwords are frequently forgotten, the methods avail-
able today for recovering them suffer from poor security,
poor usability, or both. One promising technique is social
authentication, in which selected peers vouch for one’s iden-
tity. However, like many recovery methods, this approach
requires that the provider has full access to the underlying
data. We propose a novel recovery mechanism that pre-
vents a data breach even if a host system is compromised
by relying on hardware features of Intel SGX. Our method
for social authentication also includes new defenses against
both software-level and social engineering attackers.

1. INTRODUCTION
The widespread availability of encryption means that most
computer users today have the capability to secure their con-
fidential data — but only if they don’t forget their password.
Almost all cryptosystems depend on a secret or private key,
and most implementations seek to prevent unauthorized us-
age by encrypting it with one more key — typically, the
user’s password.

Unfortunately, passwords, strong and weak alike, are fre-
quently forgotten. This is so commonplace and expected
that just about every system makes provisions for this by
implementing a recovery mechanism, allowing users an al-
ternate way to prove their identity. For example, a website
may send an email to a previously-verified address, a bank
may ask for personal information, and an IT desk can verify
an employee’s ID.

However, all recovery mechanisms suffer from the same lim-
itation: the provider has access to all of the user’s data. If
data in an account is encrypted, and only the user has the
private key, the provider can’t restore access. This problem
affects many real-world systems, such as full-disk encryp-
tion keys, master passwords for password managers, SSH
private keys, and PGP secret keys. Setting up recovery for
any of these would require sharing the keys with another
party, which may then result in the secret being compro-

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2016, June 22–24,
2016, Denver, Colorado.

mised. However, recent advancements in processor technol-
ogy offer a potential way forward.

2. SGX: SECURING THE SECRETS
2.1 SGX overview
Intel’s Software Guard Extensions (SGX) are a set of in-
structions and memory changes that add trusted computing
functionality to the Intel processor architecture [5]. Chips
with this technology started appearing in consumer devices
in 2015.

Under the SGX threat model, an attacker can gain operating-
system-level privileges on a machine, but will be prevented
from reading or tampering with the contents of protected
memory, including the code being executed.

An important feature of SGX is remote attestation [3]. The
platform is able to prove to anyone that a specific piece of
software is executing in the secure enclave. The proof is a
cryptographically signed hash of the secure container’s con-
tents. The attestation key signing the statement is unique to
each processor and can be verified against an endorsement
certificate issued by Intel.

2.2 SGX and secure recovery
SGX can address our goals for secure recovery by lifting the
requirement that we trust the provider — though it assumes
trust in the hardware manufacturer.

Secure code, running in an enclave on a server, can generate
a keypair and publicize the public key. A user, on their own
machine, can encrypt their secret (such as a PGP private
key or a master password) with this key and send it back
to the server. Since the keypair was generated in a secure
enclave using tamper-proof memory, only the trusted code
will be able to decrypt the contents. As part of this process,
the client can use attestation to verify that it is interacting
with code it trusts running in the enclave.

Now that we’ve securely delivered a secret to an SGX-enabled
system, we need some way of recovering it if the user forgets
their password. Consider, as a strawman, a system where we
recover a password with another password. This approach
can easily be implemented with SGX. The code running in
the enclave can verify a password supplied by a user and
reveal the secret if the password is correct — and under no
other circumstances.

Since our threat model includes server compromise, we would
in practice require some additional safeguards for how the
password and secret are handled. Rather than supplying the

1



password directly, the client would encrypt it, along with its
own public key, using the enclave’s public key. After vali-
dating the password, the enclave would encrypt the secret it
has been storing with the public key provided by the client,
thus ensuring that only the user will have access to it.

This system, as described, allows for securely recovering se-
crets even from an untrusted host. But of course, entering
a password to recover another password is hardly a usable
solution. What are our alternatives?

3. SOCIAL AUTHENTICATION
3.1 Considering the alternatives
One of the popular approaches to account recovery is the
use of security questions (e.g., what was your favorite color
in sixth grade?). Since the answers must be produced verba-
tim, the implementation of this method is nearly identical
to the password-based recovery in our strawman strategy.
However, research and analysis of existing deployments has
shown that security questions exhibit both poor security and
poor usability [1, 6]. Users have a hard time remembering
their answers, but they are easily guessed by attackers due
to having a small search space or being available in public
records.

Another approach is authentication with a second factor —
something you have — for example by sending a code to
the user’s email or phone. While more usable, this method
has security limitations, as it entails trusting the communi-
cation channel as well as the endpoint (e.g., the provider of
the email account). While the former can be, under some
circumstances, mitigated (such as by requiring TLS connec-
tions and terminating them within the enclave), the latter is
unavoidable. This is especially a concern because email ac-
counts are relatively easy to compromise (for example, due
to frequent password reuse).

3.2 Introducing social authentication
One authentication method that has received relatively little
attention is social authentication, the notion of your iden-
tity being verified by people you know. Though this idea
is fundamentally embedded in many human systems, it was
first introduced to the realm of authentication in 2006 by
Brainard et al. [2]. Under this approach, users who can’t
access the system seek out a previously designated “helper,”
who verifies their identity (by face-to-face conversation or a
phone call) and vouches for them by providing a specially
issued “vouch-code” obtained from the server. The asker can
then present the code to the server to obtain access.

Subsequently, Schechter et al. extended this approach to ap-
ply to email accounts and conducted the first usability study
authentication [7]. They found that most people were able
to recover their accounts successfully and that the system
repelled a high percentage of attacks that used forged email
addresses. (Insider attacks, however, were more successful.)
Since then, social authentication has seen wide-scale deploy-
ment as an account recovery feature on Facebook, where it
is known as “trusted contacts” [4].

3.3 Applying social authentication
By combining social authentication with the SGX technol-
ogy described above, we can achieve a system with desirable
security and usability properties. We propose some addi-
tional enhancements for this technique.

Authenticating helpers
In addition to authenticating helpers by email, we can iden-
tify and authenticate them by implementing OAuth for so-
cial networks and other popular providers (e.g., Facebook,
Google, Twitter, and Yahoo). In addition to a more stream-
lined user experience — helpers don’t need to switch win-
dows and wait for an email — this improves security, as
communication between the secure enclave and the API will
be done over TLS (which will not necessarily work with all
email providers).

Requiring multiple helpers
To reduce the risk from a helper being compromised, or a
provider acting maliciously, we suggest requiring multiple
helpers for the recovery process. A user-defined threshold
would determine the minimum number of vouches for access.

Preventing social engineering
While warning and instructions were found by Schechter et
al. to be relatively effective, we propose strengthening the
defenses against social engineering attacks by requiring the
asker and helper to communicate in a manner mediated by
the recovery server. One very effective option is to set up a
video call, but this requires the two parties to be online and
available at the same time. Instead, we propose that the
asker records a video requesting assistance, which is then
played to the helpers. To prevent replay attacks, the asker
is required to say a unique code for each recovery attempt.

4. RESEARCH QUESTIONS
Our research agenda includes implementing the system de-
scribed above and conducting user tests to address questions
such as the following:

• Is this system usable? Will users be willing to tolerate
the delays inherent in social authentication?

• Will people trust the security of this system, or will
they prefer more familiar recovery techniques? Is user
education required and, if so, how can it be done most
effectively?

• What is the minimum number of helpers required for
this system to be effective?

• Who are the helpers? Do they actually need to be
people who know the asker, or can we ask strangers
to compare the recovery message with another pre-
recorded video?

• How vulnerable is this method to insider attacks? What
other social engineering attacks are possible?

• If our threat model includes server compromise, how
can we ensure that SGX delivers the promised con-
fidentiality and integrity properties? (e.g., avoiding
replay and side-channel attacks)

2



5. REFERENCES
[1] J. Bonneau, E. Bursztein, I. Caron, R. Jackson, and

M. Williamson. Secrets, lies, and account recovery:
Lessons from the use of personal knowledge questions
at google. In WWW’15 - Proceedings of the 22nd
international conference on World Wide Web, 2015.

[2] J. Brainard, A. Juels, M. Yung, R. L. Rivest, and
M. Szydlo. Fourth factor authentication: Somebody
you know. In In Proc. of CCS, 2006.

[3] V. Costan and S. Devadas. Intel sgx explained.
Cryptology ePrint Archive, Report 2016/086, 2016.

[4] Facebook, Inc. Introducing trusted contacts. https:
//www.facebook.com/notes/facebook-security/

introducing-trusted-contacts/10151362774980766,
2013.

[5] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R.
Savagaonkar. Innovative instructions and software
model for isolated execution. In Proceedings of the 2nd
International Workshop on Hardware and Architectural
Support for Security and Privacy, HASP ’13, pages
10:1–10:1, New York, NY, USA, 2013. ACM.

[6] S. Schechter, A. J. B. Brush, and S. Egelman. It’s no
secret. measuring the security and reliability of
authentication via secret questions. In In Proceedings of
IEEE Symposium on Security and Privacy, pages
375–390, 2009.

[7] S. Schechter, S. Egelman, and R. W. Reeder. It’s not
what you know, but who you know: A social approach
to last-resort authentication. In In CHI ’09:
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2009.

3


